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Abstract. Genome rearrangement is a hallmark of all cancers. Cancer breakpoint
prediction appeared to be a difficult task, and various machine learningmodels did
not achieve high prediction power. We investigated the power of machine learning
models to predict breakpoint hotspots selected with different density thresholds
and also compared prediction of hotspots versus individual breakpoints. We found
that hotspots are considerably better predicted than individual breakpoints. While
choosing a selection criterion, the test ROCAUC only is not enough to choose the
best model, the lift of recall and lift of precision should be taken into consideration.
Investigation of the lift of recall and lift of precision showed that it is impossible
to select one criterion of hotspot selection for all cancer types but there are three to
four distinct groups of cancer with similar properties. Overall the presented results
point to the necessity to choose different hotspots selection criteria for different
types of cancer.
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1 Introduction

Cancer genome rearrangement is a hallmark of all cancers and hundreds of thousands
of cancer breakpoints has been documented for different types of cancers [1–3]. Het-
erogeneity of cancer mutations has been noticed long ago [4] and the accumulated data
on cancer genome mutations was termed as cancer genome landscapes [5]. Thousands
of cancer full genome data became available to researchers by the International Cancer
Genome Consortium (ICGC) [6]. Later, instead of individual cancer genomes a notion
of pan cancer has emerged [7, 8] revealing common and individual properties of cancer
genome mutations. Recently, the Pan-Cancer Analysis of Whole Genomes (PCAWG)
Consortium [9] of the International Cancer Genome Consortium (ICGC) [6] and The
Cancer Genome Atlas (TCGA) [10] reported the integrative analysis of more than 2,500
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whole-cancer genomes across 38 tumour types [11]. Apart from [11–13] point muta-
tions, a genome rearrangement with creation of structural elements is often an early
event in cancer evolution sometimes preceding point mutation accumulation.

Machine learning methods were successful in finding regularities in studying cancer
genome mutations. The most successful machine learning models was shown to be
in predicting densities of somatic mutations [14, 15]. In [14] the density of somatic
point mutations was predicted by densities of HDNase and histone modifications with
determination coefficient of 0.7–0.8. The relative contribution of non-B DNA structures
and epigenetic factors in predicting the density of cancer point mutations was studied in
[15]. It was shown that taking both groups of factors into account increased prediction
power of models.

Despite success in prediction of densities of somatic point mutations, cancer break-
point prediction models showed low or moderate power [15, 16]. This fact could be
explained both by the lack of causal determinants in the models and constrains of the
machine learning algorithms.

Previously we showed that the breakpoint density distribution varies across different
chromosomes in different cancer types [16]. Also, we showed that determination of
hotspot breakpoints depends on a threshold, and the choice of the threshold could vary
between different types of cancer and could affect the results ofmachine learningmodels.
Here we aimed at conducting a systematic study of how breakpoint hotspots density
thresholds influence prediction power of machine learning models. We also posed a
question whether the prediction power of machine learning models will be different
whether we predict individual breakpoints or breakpoint hotspots.

2 Methods

2.1 Data

Data on cancer breakpoints were downloaded from the International Cancer Genome
Consortium (ICGC) [6]. The dataset comprises more than 652 000 breakpoints of 2803
samples from more than 40 different types cancers that we grouped in 10 groups of
cancer according to tissue types and further refer as cancer types.We cut the genome into
non-overlapping windows of 100 KB of length and excluded regions from centromeres,
telomeres, blacklisted regions and Y chromosome. Then for each window we estimated
breakpoint density as the ratio of the number of breakpoints in the window to the total
number of breakpoints in a given chromosome. We used the density metric to designate
hotspots, i.e. genomic regions with a relatively high concentration of breakpoints. In the
study,we investigate three labeling types of hotspots - 99%, 99.5%and 99.9%percentiles
of breakpoint density distribution. Besides, we assigned “individual breakpoints” label
to windows containing at least one breakpoint. The proportion of the number of these
windows from the total number of windows varied from 2.8% to 90% for different cancer
types.

In the study we used the most comprehensive set of predictors, available as of today
mostly from next-generation sequencing experiments. The features include genomic
regions, TAD boundaries, secondary structures, transcription factor binding sites and a
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set of epigenetic factors (chromatin accessibility, histone modifications, DNA methy-
lation). These data were collected from The Encode, DNA Punctuation, Non-B DB
projects, UCSC Genome Browser. The data were transformed into feature vectors by
calculating window coverage of each characteristic.

2.2 Machine Learning Models

After data collection we got 30 datasets that comprise genomic features’ coverage and
binary target labeling (3 hotspots labeling with different quantile threshold of 99%,
99.5% and 99.9% per each of 10 cancer types).

The hotspot prediction power was evaluated through the train-test splits with strati-
fication by a chromosome with proportion of 70–30, retaining 30% of data for testing.
To get a reliable estimate of quality metrics we performed train-test splits 30 times for
each dataset because of high class-imbalance (very small ratio of positive examples). For
this reason, we also applied the class balancing technique (oversampling) when training
a machine learning model. We selected Random Forest as one of the most performing
and popular classification algorithm for table data to assess hotspots and breakpoints
prediction power. For the model we estimated the best hyperparameters (the number
of trees, number of features to grow a tree, minimal number of examples in a terminal
node, maximal number of nodes in a tree) by averaging performance metrics among all
cancer types.

2.3 Evaluation Metrics

We used several metrics for model evaluation: ROC AUC (Area Under Receiver Oper-
ating Curve), precision, recall, lift of precision and lift of recall. As we were dealing
with a high class imbalance for each dataset we averaged the results from 30 random
train-test splits by taking mean (or median) ROC AUC on the test set and controlling
for its standard deviation, which demonstrates how strongly the results depend on the
distribution of examples in train and test sets. We calculated recall and precision for
different probability percentiles – from 0.5% to 50%. To get an estimate of how well a
model performs in comparison with a random choice we used the lift of recall and lift
of precision. The lift of recall for a given probability percentile shows how many times
the recall of the model (estimated on examples labeled as the positive class according
to a probability percentile threshold) is higher than a random choice (it is equal to the
recall of the model divided by the probability percentile). Similarly, the lift of precision
demonstrates howmany times precision for a given probability percentile is higher than a
random choice (equal to the precision of the model divided by the proportion of positive
examples in a dataset).
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3 Results

3.1 Distribution of Test and Train ROC AUC for All Cancer Types by Hotspot
Labeling Type

We train Random Forest model on all 30 datasets for hotspot prediction and 10 datasets
for individual breakpoint prediction. The distribution of ROC AUC on test set by cancer
type and labeling type is given in Fig. 1. It could be seen that for the half of cancer types
including blood, brain, breast, pancreatic and skin cancer the higher the hotspot labeling
threshold the higher the median of test ROC AUC. For bone, liver, uterus cancer there
is no monotonically increasing median test quality but for the highest labeling type this
value is higher than for the lowest while for the rest of cancers (ovary and prostate) there
is no significant difference between labeling types.

Fig. 1. Distribution of test ROC AUC for all cancer types by hotspots labeling.

Median values of the test ROC AUC by cancer type and labeling type are presented
in Fig. 2 and Table 1. The highest quality in terms of considered metric belongs to the
breast cancer for all labeling types while the lowest – to the blood and skin cancer for
99% labeling type. The difference greater than 0.10 between the median test ROC AUC
for models of the 99% and 99.9% hotspot labeling types is observed for the blood, brain,
breast, liver and pancreatic cancer. For the half of the cancer types the highest labeling
type implies significantly higher quality according to the median test ROC AUC.
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Fig. 2. Median test ROC AUC for each cancer and labeling type.

Table 1. Median test ROC AUC for each cancer and labeling type.

Cancer type Median test ROC AUC
(99%)

Median test ROC AUC
(99.5%)

Median test ROC AUC
(99.9%)

Blood 0,552 0,593 0,693

Bone 0,606 0,621 0,673

Brain 0,612 0,689 0,75

Breast 0,715 0,81 0,861

Liver 0,645 0,646 0,784

Ovary 0,684 0,648 0,683

Pancreatic 0,625 0,689 0,752

Prostate 0,659 0,706 0,717

Skin 0,587 0,607 0,668

Uterus 0,603 0,689 0,68

On the other hand, as it could be seen in Fig. 3, the more rare hotspots we aim
to predict the higher the variance of the test ROC AUC on the test set as well as the
difference between the train and test ROC AUC. This could be explained by the fact that
for the case of rare hotspots there is small number of positive examples in a dataset and its
random permutation between the train and test set leads to different results. Moreover,
for all cancer types except for the breast cancer difference between the median train
and test ROC AUC for the 99.9% labeling type approaches 0.2 ROC AUC and is 2–3
times higher than for the 99.5% and 99% labeling types. Hence, when selecting the best
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hotspot labeling type it would be reasonable to choose the 99% or 99.5% labeling type
according to the highest median test ROC AUC.

Fig. 3. Dependence of the difference of train and test ROC AUC from test ROC AUC at different
labeling types and different standard deviations of test ROC AUC.

3.2 Lift of Precision and Lift of Recall

Next we analyzed the distribution of other quality metrics such as the lift of recall and
lift of precision. The results are presented in Fig. 4 and 5 respectively. Here confidence
intervals for the mean of these metrics are plotted against different probability quantiles
selected as a threshold for model predictions for each cancer and hotspot labeling type.
The main conclusion that could be made according to these results is that there is no
single labeling type which guarantees the best classification results for all cancer types.
However, three groups of cancer types were distinguished: the best labeling type for
the blood, brain, liver and pancreatic cancers is 99.9%, for the bone, breast and uterus
cancers - 99.5%, for the rest (ovary, prostate, skin cancers) - 99%.
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Fig. 4. Dependence of lift of recall from quantile threshold for different aggregation levels (see
text for explanation).

Fig. 5. Dependence of lift of precision from quintile threshold for different aggregation levels
(see text for explanation).

When comparing the best labeling type determined with the median test ROC AUC
and with the lift of recall/precision, it is the same only for ovary, bone and uterus cancer.
As we are mainly interested in selection of minimal number of genome regions with
the maximal concentration of hotspots, the final choice of the best labeling type will
coincide with the decision according to the lift of recall/precision.
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Interestingly, for the breast cancer all three labeling types are almost equally well
predicted: they have relatively high lift of recall and differ slightly. Besides, for pancreatic
cancer 99.9% labeling type showed significant boost in both lift of precision and lift of
recall.

3.3 Prediction of Hotspot Breakpoints Versus Individual Breakpoints

Further, we testedwhether recurrent breakpoints could bemore effectively recognized by
machine learningmodel than non-recurrent breakpoints and also howwell the individual
breakpoints are predicted. Distributions of test ROC AUC for hotspots prediction (the
best labeling type) and breakpoint prediction tasks are presented in Fig. 6.

Fig. 6. Distribution of test ROC AUC for the best labeling hotspot profile and all breakpoints
prediction.

The observed results can be summarized as follows. Firstly, for the majority of
cancer types hotspots are recognized by machine learning models considerably better
than individual breakpoints for all cancer types except for the prostate cancer. The
quantitative estimate of the difference is given in Fig. 7 and Table 2. The highest ratio of
the median test ROCAUC for hotspot prediction model to the median test ROCAUC for
breakpoint prediction model is observed for the uterus and brain cancer (1.36 and 1.23
respectively) while for the prostate cancer they are almost equal. For the other cancer
types the metric for hotspot model is 9–18% higher than for the breakpoints. Thus,
in general, breakpoints are harder to recognize than hotspots using the same genomic
features.

Also it could be seen that variance of ROCAUC is significantly lower for breakpoints
and this could be a consequence of having a considerably higher number of positive
examples for the model.
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Fig. 7. Median test ROC AUC for best labeling hotspot profile and breakpoints prediction.

Table 2. Median test ROC AUC for best labeling hotspot profile and breakpoints prediction.

Cancer type Breakpoints median test
ROC AUC

Hotspots median test
ROC AUC

Ratio of median test ROC
AUC for hotspots and
breakpoints prediction
models

Prostate 0,698 0,706 1,011

Skin 0,559 0,607 1,087

Ovary 0,625 0,684 1,095

Breast 0,766 0,861 1,124

Liver 0,572 0,645 1,128

Pancreatic 0,604 0,689 1,14

Bone 0,537 0,621 1,157

Blood 0,505 0,593 1,175

Brain 0,559 0,689 1,234

Uterus 0,505 0,689 1,363

Secondly, the quality of breakpoint prediction is quite low so that it is a difficult task
to predict cancer breakpoints by a machine learning model. For 6 cancer types including
skin, liver, bone, blood, brain and uterus cancer the median test ROC AUC does not
exceed 0.6. In contrast, the highest value of the metric (0.77) is achieved for breast
cancer.

The conclusion is confirmed by the statistics of the lift of recall given in Fig. 8. All
cancer types could be divided into 2 groups. For the pancreatic and skin cancer break-
points are unrecognizable as the lift of recall is very low (almost equal to zero). For the



226 K. Cheloshkina et al.

ovary, breast, uterus and prostate the metric hardly achieves 1 for the probability per-
centile threshold of 0–0.1 so that in these cases breakpoints are predicted as successfully
as in the case of a random choice. For the blood, bone, brain and liver cancers there are
some probability thresholds for which the lift of recall is higher than 1 with the brain
cancer model performing the best. In total, for 6 cancer types the breakpoint prediction
model quality does not significantly differ from a random choice and only for 4 cancer
types the prediction is slightly better.

Fig. 8. Lift of recall for breakpoints prediction model

Additionally, it should be noted that for the blood, bone and brain cancer the lift of
recall decreases with probability threshold. This could mean that for these cancer types
some breakpoints are highly pronounced and could be more easily identified than the
rest of breakpoints.

Besides, a set of cancer type models achieving the best performance for the task
of breakpoint prediction according to the median ROC AUC (prostate, ovary, breast)
differs from a set determined by the lift of recall (blood, bone, brain and liver). This
difference outlines the fact that it is very important to choose the right performance
metric for a given machine learning task. As the ROCAUCmeasures a quality of overall
examples’ ordering produced by themodel and the lift of recallmeasures ordering quality
of examples with the highest probabilities, they describe the model performance from
different perspectives.

4 Conclusions and Discussion

In this study, using machine learning approach we systematically investigated the effect
of different selection criteria for cancer breakpoint predictions for 10 large types of
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cancer. We built machine-learning models predicting hotspot breakpoints defined by
different density thresholds and investigated distributions of the train and test ROC
AUC as well as the lift of precision and recall. Almost for all types of cancer the median
test ROC AUC increases with an increase of threshold for hotspot selection, though
the total quantity of those regions decreases and variance of quality metrics grows up.
This fact confirms the fact that the machine learning models better recognize regions
with increased density of breakpoint mutations, or regions with recurrent breakpoints,
which requires further research. This result could be considered as expected however
we empirically found an exception for prostate cancer where median test ROC AUC for
hotspots and individual breakpoint do not differ much both being close to 0.70. This
suggests that mutagenic processes of individual and recurrent breakpoints in prostate
cancer most likely have similar nature. However the effect needs further investigation.

We would like to emphasize that, without actual tests of machine-learning perfor-
mance on individual breakpoints and breakpoint hotspots, it is not evident, which one
of the two will have a higher prediction power. Indeed, breakpoint hotspots are regions
enriched with breakpoints, and genomic features of these regions should explain their
recurrent formation. On the opposite, rare events are often harder to predict except for
the cases when strong predictors of a rare event are available. In the research we posed
a question whether the considered genome features identify breakpoints hotspots better
than individual breakpoints, and whether individual breakpoints have also distinctive
features that influence their formation. The comprehensive analysis of the features is out
of scope of the present study is the subject of further systematic research.

The lift of recall and lift of precision signify how many times recall or precision is
higher compared to a random choice. Analysis of the distributions of the lift of recall and
lift of precision showed that it is impossible to choose one breakpoint density threshold
that would lead to themaximumprediction power ofmodels for all types of cancer. Three
groups of cancer with similar behavior according to the lift of recall and lift of precision
were distinguished. Common properties of cancer breakpoint formation in these three
groups of cancer require further investigations.

Selection criteria for the best hotspot labeling threshold based on themedian testROC
AUC and the lift of recall and precision coincide only for three types of cancer – ovary,
bone, uterus. Moreover, concerning evaluation of prediction power of breakpoints these
metrics produce different results. As the ROC AUC and lift of recall measure quality of
examples’ ordering by the model at different scales (based on all examples and examples
with the highest probabilities respectively) we recommend to use the lift of recall and
lift of precision metrics to choose the hotspot thresholds.

Comparison of breakpoint predictions and breakpoint hotspots with a chosen selec-
tion criterion based on the best machine-learning model showed that the median test
AUC is always higher for hotspots rather than for individual breakpoints. We tested
additionally several machine learning models such as logistic regression and XGBoost
(results are not presented here due to the paper size limitation) and they all show approx-
imately the same relative distribution of ROC AUC, lift of recall and lift of precision
across different types of cancer.

Overall the results of our study showed that machine learning model prediction
power depends on density threshold for cancer hotspots, and the threshold is different for
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different types of cancer. Besides, we demonstrated that though individual breakpoints
are harder to predict than breakpoint hotspots, individual breakpoints can be predicted
to a certain extent, and, moreover, in prostate cancer they are predicted equally well as
hotspots. While choosing a selection criterion, the test ROC AUC only is not enough
to choose the best model, the lift of recall and lift of precision should be taken into
consideration at the level of individual type of cancer.
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